Module 3 : étude de fonctions page 47

Les objectifs de ce module sont:

- Etudier les variations et représenter les fonctions de référence,
- Résoudre graphiquement les inéquations de la forme f(x) > 0 et f(x) > g(x),

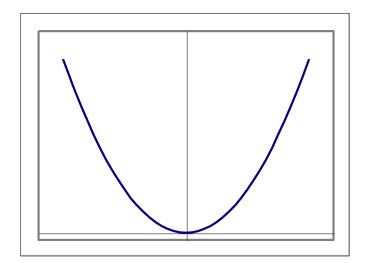
Chapitre 1 : fonctions de référence

<u>I. la fonction</u> "carrée": Soit f la fonction définie pour toutes valeurs x par $f(x) = x^2$

1. Tableau de valeur de la fonction

х	- 3	- 2	- 1	0	1	2	3
f(x)							

2. Représentation graphique de la fonction



La courbe s'appelle une **parabole** et elle est symétrique par rapport à l'axe des ordonnées

3. Tableau de variation de la fonction

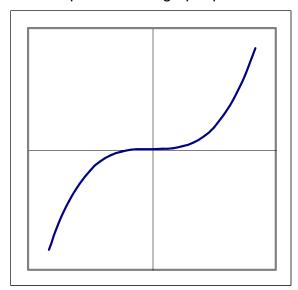
X	- 8	0	$+\infty$
f	+ ∞		+ ∞
		0	

<u>II. la fonction "cube":</u> Soit f la fonction définie pour toutes valeurs x par $f(x) = x^3$

1. Tableau de valeur de la fonction

x	- 3	- 2	- 1	0	1	2	3
f(x)							

2. Représentation graphique de la fonction



La courbe est symétrique par rapport au centre du repère

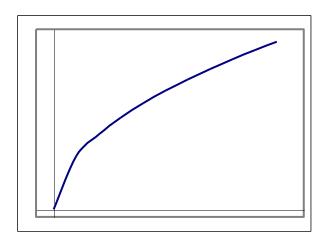
3. Tableau de variation de la fonction

X	- ∞	0	$+\infty$
			$+\infty$
f			
	- ∞		

1. Tableau de valeur de la fonction

х	0	0.5	1	2	3	4	5
f(x)							

2. Représentation graphique de la fonction



3. Tableau de variation de la fonction

X	0	+ ∞
		$+\infty$
f		
	0	

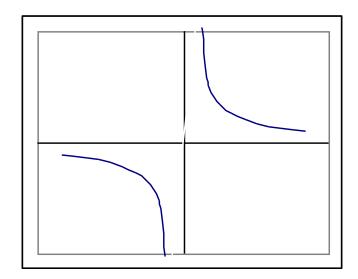
La fonction f est croissante sur l'intervalle [0 ; + ∞ [

IV. la fonction "inverse": Soit f la fonction définie pour les valeurs de x non nulle par $f(x) = \frac{1}{x}$

1. Tableau de valeur de la fonction

Х	- 3	- 2	- 1	- 0.5	0.5	1	2	3
f(x)								

2. Représentation graphique de la fonction



La courbe s'appelle une <u>hyperbole</u> et elle est symétrique par rapport au centre du repère

3. Tableau de variation de la fonction

X	- ∞	0	$+\infty$
f	0		0

<u>Application</u>: Représenter graphiquement ces quatre fonctions sur la calculatrice

V. Exercices d'application en équipes et corrigés en demi-groupes:

Activités 1, 2 et 3 pages 51 et 52

Ex 4, 5, 7, 8, 10 et 11 puis « Testez-vous! » et problème 16 page 57 à 59.

Chapitre 2 : le second degré page 77

I Etude d'une fonction polynôme du second degré

1. Définition

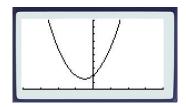
On appelle fonction polynôme du second degré, toute fonction de la forme

$$f(x) = ax^2 + bx + c$$

où a, b et c sont des nombres quelconques. De plus "a" ne doit pas être nul.

2. Représentation graphique

Exercice représenter graphiquement la fonction $f(x) = 2x^2 + 2x + 2$ sur l'intervalle [-4;4].



<u>Conclusion</u>: La représentation graphique d'une fonction polynôme du second degré de la forme $f(x) = ax^2 + bx + c$ est <u>une parabole</u>.

3. Sens de variation

Les variations d'une fonction de la forme $f(x) = ax^2 + bx + c$ dépendent de la valeur

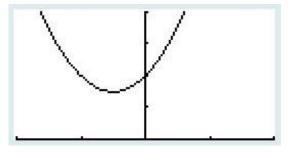
de a:

Si a > 0

la parabole est ouverte vers le haut

$$\underline{\text{exemple}} f(x) = 2x^2 + 2x + 2$$

la fonction admet un minimum.

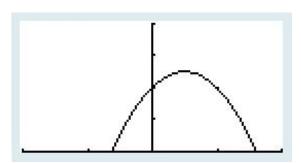


Si a < 0

la parabole est ouverte vers le bas

$$\underline{\text{exemple}} \ g(x) = -2x^2 + 2x + 2$$

la fonction admet un maximum.



Remarque: La courbe atteint son sommet pour $x_s = \frac{-b}{2a}$

La valeur de ce sommet est $f(x_s)$

Exemple Calculer pour quelle valeur de x, la fonction $f(x) = 2x^2 + 2x + 2$ admet un minimum.

Activités 1, 2, 3 page 77

Exercices 1, 2, 8, 9 testez-vous et pb 14 page 83 à 85

Il résolution d'une équation du second degré

1. Définition

Résoudre une équation du second degré de la forme $ax^2 + bx + c = 0$, c'est trouver toutes les valeurs de x pour lesquelles l'égalité est vraie.

Ces valeurs sont appelées les <u>racines du polynôme</u>.

La valeur $\Delta = b^2$ - 4ac est appelée <u>discriminant du polynôme</u> ax² + bx + c.

2. Résolution

Méthode

- a. Trouver les valeurs a, b et c de l'équation
- b. Calculer la valeur de $\Delta = b^2 4ac$
- c. Déterminer le signe de Δ
 - Si Δ < 0 alors l'équation ax² + bx + c = 0 n'a aucune solution,
 - Si Δ = 0 alors l'équation ax² + bx + c = 0 a une seule solution : x =
 - Si $\Delta > 0$ alors l'équation $ax^2 + bx + c = 0$ a deux solutions :

$$X_1$$
= et x_2 =

Voir cours complet page 91.

3. Application

Résoudre:
$$0.5x^2 - 3x - 8 = 0$$
 $9x^2 + 6x + 1 = 0$ $x^2 + 2x + 5 = 0$

III signe du polynôme ax² + bx + c

1. <u>définition</u>

Le polynôme ax² + bx + c est positif ou négatif selon les valeurs de x pour lesquelles on le calcule.

Pour connaître son signe, il faut calculer son discriminant et ses racines.

2. Méthode

- Calculer △
- Si Δ ≤ 0, le polynôme ax² + bx + c a le même signe que "a" pour toute valeur de x
- Si Δ > 0, le polynôme ax² + bx + c a le signe de "a" lorsque x prend une valeur qui se situe à l'extérieur des racines x₁ et x₂.
 Le polynôme a le signe contraire de la valeur de "a" lorsque x prend une valeur qui se situe à l'intérieur des racines x₁ et x₂.

On fait donc le tableau suivant :

Valeur de X)	(₁ х	.2
Signe de ax ² + bx + c	Signe de a	Signe contraire de a	Signe de a

Activités 1 et 2 page 89

Exercices 1, 2, 8, 9, 10, 11, 13, 14 testez-vous ! page 95 à 97